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Sudden Unexpected Death in Fetal 
Life Through Early Childhood
Richard D. Goldstein, MD, a Hannah C. Kinney, MD, b Marian Willinger, PhDc

In March 2015, the Eunice Kennedy Shriver National Institute of Child Health 

and Human Development held a workshop entitled “Sudden Unexpected 

Death in Fetal Life Through Early Childhood: New Opportunities.” Its 

objective was to advance efforts to understand and ultimately prevent 

sudden deaths in early life, by considering their pathogenesis as a potential 

continuum with some commonalities in biological origins or pathways. A 

second objective of this meeting was to highlight current issues surrounding 

the classification of sudden infant death syndrome (SIDS), and the 

implications of variations in the use of the term “SIDS” in forensic practice, 

and pediatric care and research. The proceedings reflected the most current 

knowledge and understanding of the origins and biology of vulnerability to 

sudden unexpected death, and its environmental triggers. Participants were 

encouraged to consider the application of new technologies and “omics” 

approaches to accelerate research. The major advances in delineating 

the intrinsic vulnerabilities to sudden death in early life have come from 

epidemiologic, neural, cardiac, metabolic, genetic, and physiologic research, 

with some commonalities among cases of unexplained stillbirth, SIDS, and 

sudden unexplained death in childhood observed. It was emphasized that 

investigations of sudden unexpected death are inconsistent, varying by 

jurisdiction, as are the education, certification practices, and experience 

of death certifiers. In addition, there is no practical consensus on the use 

of “SIDS” as a determination in cause of death. Major clinical, forensic, and 

scientific areas are identified for future research.
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Sudden unexplained death in early life, 

from the fetal period to early childhood, 

poses long-lasting burdens to affected 

families seeking explanations, and a 

significant challenge for those seeking 

to better understand and improve 

child survival. In 2013, there were 

23 595 stillbirths (fetal deaths ≤20 

gestational weeks) in the United States, 

according to the National Center 

for Health Statistics.1 Although the 

proportion of unexplained stillbirth 

varies by classification scheme, a US 

population-based study did not identify 

a cause in 24% of stillbirths.2 There 

were also 3422 sudden unexpected 

infant deaths (SUIDs)3 (87.0/100 000 

live births), with 45.6% reported 

as due to the sudden infant death 

syndrome (SIDS). SIDS is defined as 

the sudden and unexpected death 

of an infant <12 months of age that 

remains unexplained after a review of 

the clinical history, complete autopsy, 

and death scene investigation.4 SIDS 

is the leading cause of postneonatal 

mortality, and the fourth leading cause 

of overall infant mortality in the United 

States.3 Sudden unexplained death in 

childhood (SUDC), another category of 

unexplained death, occurs in children 

>1 year old lacking a determined cause 

of death after complete postmortem 

investigation, with an incidence of 1.3 
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per 100 000 for children between 1 

and 4 years.5

The Eunice Kennedy Shriver National 

Institute of Child Health and Human 

Development held a workshop 

March 23 to 24, 2015, entitled 

“Sudden Unexpected Death in Fetal 

Life Through Early Childhood: New 

Opportunities.” Its objective was 

to advance efforts to understand 

and ultimately prevent sudden 

deaths in early life, by considering 

their pathogenesis, at least in part, 

as a potential continuum with 

some common biological origins 

or pathways. Invited researchers 

shared work on biological factors 

relevant to sudden deaths from 

fetal life through early childhood, 

including intrinsic factors involved 

in unexpected death, underlying 

biological evidence of preceding 

conditions or circumstances that 

may contribute, or interactions 

between intrinsic vulnerabilities and 

adverse environmental factors in 

the pathogenesis of sudden death. 

A second objective was to highlight 

current issues surrounding the 

classification of SIDS in forensic 

practice, pediatric care, and research. 

Participants were also encouraged 

to consider new technologies and 

“omics” approaches to accelerate 

research. The Triple Risk Model for 

SIDS, proposing that SIDS occurs 

in infants with latent biological 

vulnerabilities, exposed to external 

threats during a critical period in 

development, served as a reference.6 

A similar model has been proposed 

for unexplained stillbirth.7 This 

report summarizes the current 

state of knowledge, and promising 

approaches in different disciplines. 

Gaps in knowledge and future 

directions identified by participants 

are listed.

ANTENATAL ORIGINS OF 
VULNERABILITY

Several factors reflecting an adverse 

intrauterine environment are seen in 

both stillbirth and SIDS. These factors 

include placental abnormalities, poor 

fetal growth, and preterm labor. An 

estimated 25% to 40% of stillborns 

are small for gestational age, 8, 9 also a 

risk factor for SIDS.10, 11 Pregnancies 

in an individual woman before and 

after a SIDS loss are more likely to 

be complicated by poor fetal growth 

and early labor.12 Elevated levels 

of α-fetoprotein in maternal serum 

are associated with preterm birth, 

in utero growth restriction, and 

stillbirth, perhaps reflecting impaired 

placental function.13 There is a linear 

positive correlation between second 

trimester α-fetoprotein levels and 

subsequent risk for SIDS, which 

remains significant after adjusting 

for gestational age, birth weight, 

maternal age, parity, socioeconomic 

deprivation, smoking, and infant 

gender. In utero exposure to cigarette 

smoke and alcohol increases the 

risk for both stillbirth and SIDS.14–19 

Yet, despite the number of noted 

associations, stillbirth rates have not 

declined like SIDS.

The influence of interventions 

promoting supine sleep position on 

reducing mortality from SIDS is well 

recognized.20 Less recognized is that 

declines in SIDS are not solely due 

to modifications in the infant sleep 

environment. There is significant 

concordance between reductions 

in SIDS mortality rates and those 

of explained causes of infant death, 

particularly mortality due to 

congenital anomalies, respiratory 

distress of the newborn, and diseases 

of the circulatory system.21 This 

concordance suggests that changes 

in perinatal factors or advances 

in medical approaches to the care 

of infants that have contributed 

to improvement in other causes 

of death, also likely contribute to 

declines in intrinsic vulnerability for 

SIDS. For example, widespread use 

of antenatal steroids and surfactant 

coincided with the promotion of Safe 

Sleep in the United States. Further, 

the prevalence of known SIDS risk 

factors that may mediate intrinsic 

risk, changed over this period; for 

example, maternal smoking during 

pregnancy, teen pregnancy, and 

levels of inadequate prenatal care 

declined, and breastfeeding rates 

increased.

PROGRESS TOWARD UNDERSTANDING 
UNDERLYING INTRINSIC 
VULNERABILITIES

Neuropathology

Unexplained stillbirth and SIDS 

share common brain abnormalities, 

notably hypoplasia of the arcuate 

nucleus (considered the respiratory 

chemosensitive zone of the ventral 

medulla), gliosis of cerebral 

white matter and brainstem, and 

periventricular leukomalacia.22 The 

latter 2 may be caused by prenatal 

hypoxia-ischemia and reflect adverse 

intrauterine environments.

It has been suggested that a 

significant subset of sudden deaths 

in early life involves dysfunction 

in limbic forebrain, to include the 

hippocampus and brainstem circuits, 

designated the “central homeostatic 

network.”23 This purported neural 

network is involved in arousal, 

respiratory, autonomic, emotional, 

and cognitive homeostatic responses 

used to protect against stresses 

and potentially life-threatening 

challenges.23 Similar hippocampal 

anomalies have been reported in 

cases of SIDS and SUDC.5, 23–27

A range of brainstem 

neurotransmitter defects are 

found in SIDS.28 The most robust 

abnormalities are observed in the 

serotonin (5-HT) network, composed 

of 5-HT neuronal aggregates in 

rostral and caudal brainstem 

domains.29–35 Serotonin is released 

from brainstem neurons projecting 

to the dentate gyrus. Serotonin 

serves a trophic role on granule 

cell migration and proliferation, 

suggesting that 5-HT plays a role in 

the pathogenesis of this combined 
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developmental hippocampal 

and brainstem pathology.24, 25 

Abnormalities are seen in the dentate 

gyrus of the hippocampus in ∼40% of 

SUID, a fivefold increased frequency 

compared with infants dying of 

known causes, 24 and in ∼50% of 

cases of SUDC, 25 also significantly 

increased when compared with 

children dying of known causes. 

The abnormalities are characterized 

by bilayering of granule cells in the 

dentate gyrus of the hippocampus, 

termed dentate gyral bilamination, 

previously reported in some cases 

of temporal lobe epilepsy.36, 37 

Some researchers hypothesize 

that abnormalities in hippocampal 

regulation in at least some cases 

of sudden unexplained death lead 

to cardiorespiratory/homeostatic 

instability or autonomic seizures 

as a mechanism of sleep-related 

sudden death in infancy and early 

childhood.5, 24–26 Approximately 

two-thirds of SUDC cases with 

hippocampal pathology have a 

personal and/or family history of 

febrile seizures, suggesting that such 

seizures are a risk factor for sudden 

death in this circumstance.25 Further, 

abnormalities in ≥1 “nodes” of the 

homeostatic network can cause 

sudden, sleep-related sudden death in 

early life.23 Alternatively, hippocampal 

and brainstem findings may reflect 2 

subsets of disorders within the central 

homeostatic network that manifest 

as sudden death in infants via a final 

common pathway.

Cardiac Genetics

In addition to brain vulnerabilities, 

arrhythmiagenic disorders of 

cardiac function are increasingly 

recognized in association with 

sudden unexplained death in early 

life. Genetic research has focused on 

identifying a subset of deaths due to 

loss-of-function or gain-of-function 

mutations in ion channels of the 

heart. Initial findings suggested that 

2% of infants dying from SIDS carried 

gain-of-function mutations in the 

SCN5A-encoded sodium channel.38 

Research is finding a further 

contribution of genes involved 

in cardiac channelopathies, 39, 40 

including pore-forming mutations 

in the calcium release channel that 

give rise to the ryanodine receptor 

and catecholaminergic polymorphic 

ventricular tachycardia, 41 and 

4 additional long QT syndrome 

susceptibility genes involving 

channel interacting proteins and 

caveolin-3 mutations (which affect 

sodium channels).42 Understanding 

the contribution of these cardiac 

channelopathies in fetal loss is 

ongoing, including a report of 3 long 

QT syndrome–associated mutations 

among fetal deaths.43

Whole exome sequencing is 

expanding the identification of 

mutations that may increase 

vulnerability to sudden death in 

early life. A rational approach to 

variants of unknown significance 

discovered through whole exome 

sequencing is an important concern. 

Functional validation is critical to 

demonstrate biological plausibility, 

and thus avoid undue family distress 

and unnecessary interventions. 

Functional validation is possible by 

site-directed mutagenesis in cell lines 

in culture and voltage clamp analysis 

demonstrating electrical current 

abnormalities; for example, defects 

in depolarization, or other whole 

animal functional validation models. 

Genetically based disorders may have 

different phenotypic expressions 

at different ages, presumably 

due to different developmental, 

environmental, and epigenetic factors 

across the age spectrum.

Metabolic Disorders

Vulnerability arises from inherited 

metabolic disorders (IMDs) in 

1% to 2% of SIDS deaths.44 These 

disorders can be identified soon 

after birth, and death potentially 

prevented by interventions specific 

to the disorder. These metabolic 

disorders, primarily fatty acid 

oxidation disorders, mimic the 

presentation of SUID, with little or no 

clinical prodrome.45 Medium-chain 

acyl coenzyme A dehydrogenase 

deficiency is the most prevalent fatty 

acid oxidation disorder detected 

among SUIDs.44 Newborn screening 

for medium-chain acyl coenzyme 

A dehydrogenase led to newborn 

screening now performed in all 

states and territories of the United 

States.46 The adoption of advancing 

methodologies in newborn screening 

has shown that IMDs are more 

common than previously estimated 

by clinical presentation.47 With 

focused attention to new disorders, 

unrecognized IMDs are likely to 

be discovered with the advent of 

new technologies, rapid genomic 

screening, and early detection with 

fetal screens.

Fetal, Infant, and Maternal 
Physiology

Autonomic dysfunction is 

hypothesized to contribute to 

SIDS and stillbirth pathogenesis. 

Diminished high-frequency heart rate 

variability (HRV), a common measure 

of cardiac parasympathetic nerve 

activity, 48 and abnormalities in beat-

to-beat dynamics of cardiac control 

have been observed in SIDS infants.49 

High-frequency HRV is also altered 

in infants with known risk factors 

for SIDS, including prematurity, 

prenatal exposures, such as smoking, 

and environmental exposures, such 

as prone sleeping.50 Patterns of HRV 

change dramatically as a function of 

age and sleep state during prenatal 

and postnatal development.51, 52 

Individual differences in HRV can 

now be quantified throughout the 

perinatal period, providing accurate 

measures of baseline autonomic 

nervous system maturity. It is also 

possible to assess functional responses 

to in utero challenges, such as those 

associated with maternal sleep position 

or intermittent hypoxia.53, 54

Study of the development of brain 

activity provides a new focus for 
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determining early vulnerability to 

SIDS. The developmental asleep EEG 

profiles in the Collaborative Home 

Infant Monitoring Effort study show 

that healthy infants commonly display 

bursts of high-frequency activity 

during sleep, at rates of ∼10 bursts 

per minute, until ∼35 weeks to 44 

postconceptional weeks, when bursts 

greatly diminish in number.55 These 

bursts appear to be an important EEG 

feature during early development, 

potentially indicative of the functions 

of subplate neurons, a transient 

population underlying the cerebral 

cortex critical for establishing 

early connectivity in normal brain 

development.56 Subplate injury in 

animal models eliminates bursts, 

and affects cortical development.57, 58 

Research about the functional effects 

of prenatal alcohol and smoking 

exposure on brain development may 

eventually inform researchers about 

how these factors affect control of 

autonomic processes in the central 

homeostatic network, and responses 

to environmental challenges.

Researchers are investigating 

intrauterine stress to the fetus 

associated with the physiology 

and pathology of maternal sleep 

during pregnancy. Obstructive 

sleep apnea is present in 10% to 

26% of pregnant women, with 

increasing prevalence approaching 

term, when most unexplained 

stillbirths occur.59 Sleep-disordered 

breathing and obstructive sleep 

apnea cause recurrent fetal exposure 

to hypoxemia, oxidative stress, 

inflammation, and sympathetic 

activity.60 Maternal sleep apnea is 

associated with preeclampsia, in 

turn a risk factor for both SIDS61 

and stillbirth.62 Epidemiologic 

studies of stillbirth have focused on 

the role of maternal sleep position, 

including 2.54-increased risk for 

late stillbirth (≥28 weeks’ gestation) 

in mothers sleeping on their backs, 

and 1.74-increased risk in those 

sleeping on the right side, compared 

with sleeping on the left.63 A study 

of stillbirth at ≥32 weeks’ gestation 

reported 6.24 increased risk of 

stillbirth for supine sleep compared 

with the left side.64 Although 

the mechanisms underlying this 

association have yet to be delineated, 

growth restriction is more prevalent 

in stillbirths of women reporting 

sleeping on the back, 65 indicating a 

potential role of uterine blood flow.

ENVIRONMENTAL (EXTRINSIC) 
FACTORS

Multiple studies have examined 

risk factors in the infant sleep 

environment for SIDS. Extrinsic 

factors associated with increased 

SIDS risk include prone and side 

sleep position, soft sleep surface 

and soft bedding over or under the 

infant, head or face covered during 

sleep, excess thermal insulation, 

bed sharing, and postnatal smoke 

exposure.20 Factors associated with 

reduced risk of SIDS include pacifier 

use, breastfeeding, and room sharing 

without bed sharing. Campaigns to 

reduce prone sleep position have 

been successful with a concomitant 

reduction in SIDS, but similar effects 

have not been seen from reductions 

in related practices like bed sharing66 

or suspect bedding.67 In addition, 

disparities remain in the incidence 

of SIDS and other SUIDs in American 

population subgroups, with highest 

rates found among American Indian 

or Alaska Native and non-Hispanic 

black infants.3

Research on maturational physiology 

of infant sleep has been vital to 

understanding contributing factors 

to sudden death in the young, as 

most deaths occur during a sleep 

period. Maturation of the autonomic 

regulation of both the respiratory 

and cardiovascular systems occurs 

during infancy.68, 69 Sleep induces a 

decrease in blood pressure, heart 

rate, respiratory rate, and muscle 

tone, importantly in the upper 

airways, and depresses protective 

reflexes to hypoxia and hypercapnia. 

In the prone position, blood 

pressure70 and cerebral oxygenation 

are reduced71 and cerebral vascular 

control is impaired.72 Additionally, 

between 2 and 4 months of age, the 

peak period for SIDS, healthy term 

infants have depressed arousal and 

baroreflex response in the prone 

position.73–75 Preterm infants have 

lower blood pressure and cerebral 

oxygenation than age-matched 

term infants, most marked when 

in the prone position.76, 77 These 

observations provide evidence for 

the increased risk of sudden death in 

infants sleeping prone, and at critical 

developmental periods.

PROMISING APPROACHES FOR 
DISCOVERY OF UNDERLYING 
VULNERABILITIES

Advances in neuroimaging, and 

mathematical approaches to imaging 

data reconstruction, are aiding the 

elucidation of brain mechanisms 

in the pathogenesis of sudden 

unexplained death in early life. 

MRI of the neonatal and preterm 

brain, for example, has been the 

basis for brain atlases that include 

calibration for postconceptional 

age.78, 79 Advanced imaging has been 

used to examine how functional 

sensorimotor connections are 

affected by prematurity and 

associated pathology when presented 

with a stimulus.80 Noninvasive 

technologies to measure fetal 

autonomic development in real time 

and for extended periods to identify 

fetuses at risk are now available. 

Researchers are now also attempting 

to integrate genetics and function 

with human connectivity, in central 

homeostatic network23 and in utero 

pathways. This integrative approach, 

for example, has been initiated with 

candidate genes and brain injury 

associated with preterm birth81, 82

Currently, information regarding 

physiologic vulnerability and the 

cascade of physiologic events leading 
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to SIDS is limited. Advances in 

bedside recording in NICUs allow 

for the generation of vast amounts 

of longitudinal data in infants, 

including cardiac, respiratory, and 

neural parameters. The potential 

now exists for comprehensive data 

collection on samples of sufficient 

power to develop growth chart–like 

normative databases, to interpret 

altered physiologic development and 

responses in SIDS. Collaboration in 

this area holds new promise for the 

study of rare outcomes.

Breakthroughs in genomics, 

proteomics, transcriptomics, and 

metabolomics hold new potential to 

decipher vulnerabilities and pathways 

in sudden unexplained death in 

early life. “Omics” approaches, for 

example, are leading to a greater 

understanding of 5-HT in SIDS 

pathogenesis. In a proteomics study 

of the medullary 5-HT network 

in SIDS, for example, there was a 

significant reduction in the family of 

14-3-3 signal transduction proteins 

in SIDS cases compared with autopsy 

controls.83 This protein family 

has multiple cellular functions, 

including facilitating 5-HT activity 

through interaction with tryptophan 

hydroxylase-2, the rate-limit 

biosynthetic enzyme for 5-HT, and 

reduced 14-3-3 protein levels could 

result in less effective 5-HT activity. 

The application of transcriptomics 

to human brain development in 

postmortem specimens is in early 

stages, but appears feasible.84 

Currently, “omics” approaches are 

limited by technical interpretation 

of biologically relevant differences 

(signal-to-noise); the complexities of 

confirming “omics” findings by other 

methods (eg, confirmation by Western 

blotting of protein abundance 

differences detected by broad-based 

proteomics); and understanding 

primary versus secondary, including 

compensatory, changes.

Whole exome sequencing of infants 

and their parents in the NICU is 

another area in which the mining 

and analysis of “big [omics] data” 

may reveal important aspects of 

underlying physiology and new 

disorders with susceptibility 

to sudden death. The Newborn 

Sequencing in Genomic Medicine 

and Public Health program is 

examining the impact of rapid exome 

sequencing on clinical care and 

discovery.85, 86 Highly penetrant, rare 

variants that are likely to disrupt 

protein function as determined by 

criteria from the American College 

of Medical Genetics and Genomics87 

are sought. Rapid exome analysis 

of 35 undiagnosed newborns in the 

NICU led to diagnosis in 57%, and 

17% received a partial diagnosis. 

Sixty-five percent of the whole 

genome sequencing results revealed 

de novo mutations, whereas 31% 

were inherited; the remainders were 

somatic mutations or chimerism. The 

diagnostic rate of 57% is a significant 

improvement compared with 9% 

who were diagnosed based on 

traditional genetic tests.

The National Institutes of Health 

Undiagnosed Disease Network uses 

genetic testing for those individuals 

whose first-level testing (eg, family 

history, physical examination, 

clinical chemistry, and imaging) fails 

to diagnose a suspected metabolic 

disorder. As part of this effort, the 

Undiagnosed Disease Network 

has metabolomics core facilities 

to determine the normal ranges 

of metabolites in serum, plasma, 

cerebrospinal fluid, and urine in 

healthy individuals of different ages, 

gender, and races or ethnicities, 

including validating and quantifying 

metabolites identified from critical 

cellular pathways or processes. One 

of these core facilities is working to 

establish the normal relative ranges of 

metabolites for deceased individuals 

of different ages, gender, and races 

or ethnicities and at different 

postmortem intervals, with direct 

relevance to diagnosis and discovery 

in sudden death in early life.

The Role of Animal Models in 
Research

Validation for purported mechanisms 

of sudden unexplained death 

in early life may be found in 

animal models. Human autopsy 

studies can characterize regional, 

chemical, cellular, and molecular 

pathology, but findings represent 

only a “snapshot” of the process 

at 1 point in time (“end stage” at 

death), and cannot demonstrate 

mechanisms. Whole animal models, 

as well as reduced preparations 

and cell culture systems, permit 

exploration of genetic and nongenetic 

(acquired and environmental) 

factors in sudden death. For 

example, the hypothesis that the 

underlying vulnerability is a failure 

in protective responses to hypoxia, 

hypercarbia, or hyperthermia 

in brainstem 5-HT pathways 

has been investigated by using 

several models of 5-HT brainstem 

deficiency.88–93 These models 

include genetically engineered 

mice with reversibly “silenced” 

5-HT neurons using the Designer 

Receptors Exclusively Activated by 

Designer Drugs technology.93, 94 In 

all of these 5-HT–deficient models, 

physiologic aberrations in responses 

to hypoxia, including in arousal 

and autoresuscitation, have been 

demonstrated, as have effects 

during sleep.95 The effects of 

5-HT deficiency in these models 

on the laryngeal chemoreflex is 

under investigation.96 Physiologic 

effects also have been shown to be 

exacerbated by the risk factors of 

prenatal exposure to alcohol at a 

critical postnatal age, 97 cigarette 

smoke/nicotine, 98, 99 hyperthermia, 100 

and other epigenetic factors (S. 

Lee, E.E. Nattie, A. Li, unpublished 

data). Animal models are also of 

value in developing biomarkers of a 

particularly abnormality (eg, 5-HT 

deficiency), and development of 

treatment strategies, including drugs. 

The respiratory stimulant caffeine, 

used currently in neonatal nurseries 

for apnea of prematurity, for 
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example, improves autoresuscitation 

abilities in 5-HT–deficient genetic-

knockout mice.92

INFLUENCE OF FORENSICS AND VITAL 
STATISTICS REPORTING

Although a persistent cause of 

infant mortality, the diagnosis 

of “SIDS” has been the subject of 

skepticism. In recent years, some 

medical examiners have called 

for the elimination of SIDS as a 

diagnosis or determination on death 

certificates.101, 102 Indeed, there is 

no practical consensus about how 

the term “SIDS” is used.103 External 

risk factors, such as prone sleep 

position or bed sharing, may at times 

be considered to explain cause, such 

as positional asphyxia or accidental 

suffocation. At the same time, 

methods and expertise in the taxed 

medical examiner systems prevent 

the kind of detailed autopsies 

necessary for rare discoveries. 

Investigations of sudden unexpected 

death vary by jurisdiction, as does 

the education, certification practice, 

and experience of death certifiers.104 

Consequently, surveillance and 

research are adversely affected

Death certificate data are mostly 

coded automatically by the National 

Center for Health Statistics Mortality 

Medical Data System.105, 106 The 

system applies codes based on 

International Classification of Diseases 

rules and a broad range of key 

terms. Death certificates that cannot 

be automatically coded require 

manual coding, particularly cases of 

accidental suffocation, 106 creating 

differences between assigned death 

codes and the intent of the death 

certifier.105 Moreover, completion 

of a death scene investigation or 

autopsy is not considered in coding. 

In recent years, cases coded as 

“unknown cause” and “accidental 

suffocation” are increasing.107 In 

2013, approximately half of SUIDs 

were ultimately categorized as SIDS, 

including some cases when the death 

certifier wrote “SUID” on the death 

certificate. Because cause-of-death 

reporting practices and coding are 

inconsistent, it is difficult to evaluate 

the current status of SIDS in the 

United States without also including 

unknown causes and accidental 

suffocation.107

The medical examiner system has 

been historically constrained in 

its ability to research vulnerability 

to risk for sudden death.108 It is 

difficult for researchers to access 

human SIDS tissue via medicolegal 

offices, where mandated autopsies 

occur. Examples of programs 

bridging the gap include California, 

which allows research without 

consent on autopsy tissue from any 

infant younger than a year old who 

dies suddenly and unexpectedly, and 

New Jersey, which provides a system 

for delayed consenting of approved 

protocols.

THE TRANSLATION OF BASIC 
DISCOVERY TO CLINICAL PRACTICE

Robert’s Program on Sudden 

Unexpected Death in Pediatrics 

at Boston Children’s Hospital is 

the first comprehensive program 

to apply the undiagnosed disease 

paradigm to sudden infant and early 

childhood death. Clinicians and 

pathologists become involved, with 

parental consent, while the forensic 

autopsy is ongoing for children dying 

at <3 years old without apparent 

explanation in Massachusetts. The 

combined academic-forensic review 

includes the autopsy, death scene 

investigation, enhanced assessment 

of personal and familial past medical 

history, pedigrees, collaborative 

pathology and neuropathology, 

whole exome sequencing involving 

parents and deceased child, and 

metabolomics. The academic 

team includes physicians expert 

in general pediatrics, genetics, 

metabolism, cardiology, neurology 

(epilepsy), pediatric pathology, 

and neuropathology. The academic 

and forensic teams deliberate 

each case together at the end of 

their evaluations and cause of 

death is determined, with the 

manner determined by the medical 

examiners. Integral to the program 

is grief counseling, with the 

counseling and in-depth medical/

forensic investigations advancing 

mutual objectives. Families are 

interviewed in depth after the death 

to get their perspective on why 

they think the death occurred and 

the circumstances surrounding the 

death. Although sufficient numbers 

of genetic results are just beginning 

to be analyzed, important findings 

have occurred, including further 

evidence for dentate bilamination 

and genetic findings not evident from 

pedigrees (R. Goldstein, H.M. Nields, 

H.C. Kinney, unpublished data). 

This promising approach requires 

significant resources, expertise, and 

infrastructure.

GAPS AND FUTURE DIRECTIONS

Progress toward greater 

understanding of the biology of 

vulnerability for sudden unexpected 

death from fetal life through early 

childhood is occurring through 

contributions from many fields. 

The research presented at the 

workshop supported focusing on 

the intrauterine environment, the 

nervous system, and potential 

causative variants for a subset 

of deaths. Looking forward, 

workshop participants discussed 

gaps in knowledge and promising 

approaches in research, translation, 

public health, and training (Table 

1). The availability of new imaging 

technologies, and the tools to 

collect and analyze large complex 

physiologic, imaging, and genomic 

databases independently and in 

concert, provide new opportunities 

for research. For example, with 

the common theme of an altered 

intrauterine environment as 

an important contributor to 
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vulnerability for unexpected death, 

longitudinal studies using multiple 

modes of data collection, starting 

from fetal life through infancy, 

are now possible. The new omic 

technologies provide opportunities 

to examine transcriptional pathways, 

quickly assess metabolic disorders, 

and search for potential rare 

causative variants. Challenges 

were identified. The recognition 

that rates of late stillbirth and 

sleep-related infant deaths have 

not changed in recent years 

supports efforts to develop new and 

improved interventions. Also, the 

basic difficulty arising from lack of 

consensus about nomenclature of 

sudden deaths hampers surveillance, 

supportive care, and research. It is 

hoped that the deliberations of this 

workshop will contribute to future 

innovation in research and clinical 

care for sudden and unexplained 

death in early life, and ultimately 

prevention.
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ABBREVIATIONS

5-HT:  serotonin

IMD:  inherited metabolic disorder

SIDS:  sudden infant death 

syndrome

SUDC:  sudden unexplained death 

in childhood

SUID:  sudden unexplained infant 

death

TABLE 1  Gaps and Opportunities

Research Characterizing interactions between intrinsic vulnerability and external factors that may trigger a lethal pathway.

Integrating epidemiology into longitudinal studies that incorporate physiology and “omic” technologies.

Documenting early markers of placental development and function to include the gene expression profi les and regulation of 

transcription in the placenta.

Exploring the continuum and developmental trajectory of the physiology of homeostasis, including preterm and postnatal 

environmental infl uences, and differences by race/ethnicity.

Determining gender differences in placental development, and fetal and infant homeostasis.

Collaborating to develop a large database of a multicenter birth cohort that is intensively phenotyped and prospectively 

followed; NICU monitoring is a potential source.

Characterizing the development and function of the human central homeostatic network in early life.

Continuing to develop neuroimaging of the developing brain connectome, to include improvement in technology and 

bioinformatics from fetal life through infancy, with particular attention to linking imaging data to biologic function.

Analyzing genomic cohorts of uniformly phenotyped SIDS, early childhood deaths, and unexplained stillbirth trios, to quantify the 

types and proportion of highly penetrant, rare causative variants and their associated phenotypes.

Researching the infl uence of maternal sleep physiology, including uterine blood fl ow, on fetal vulnerability to sudden death 

(stillbirth).

Better understanding the trajectory of, and ways in which, families of young children grieve, and how enhanced attachment, 

cultural, psychosocial dynamics, and other factors affect grief.

Translation Developing noninvasive technologies to measure fetal development in real time and for extended periods, to identify fetuses at 

risk.

Developing new testing strategies for early detection of metabolic disorders and other genetic disorders; improved point-of-

service testing and rapid DNA diagnosis.

Improving methods to identify poor placental function late in pregnancy among low-risk women to aid in timely delivery to 

prevent term stillbirth and infant mortality and morbidity.

Applying the undiagnosed disease paradigm in programs staffed jointly by clinicians, researchers, and forensic professionals 

that actively integrate the latest technologies, research fi ndings, fatality review, and counseling.

Expanding effective interventions for safe sleep, particularly in high-risk populations.

Public Health Using defi nitions and terminology for SIDS and other SUIDs that are mutually acceptable and uniform, by pediatricians and 

other child health providers, forensic practitioners, researchers, and public health advocates. This gap also has importance 

to research.

Training Satisfying the requirement for a larger pool of trained perinatal and pediatric pathologists and pediatric neuropathologists.
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